258 research outputs found

    "All on short" prosthetic-implant supported rehabilitations

    Get PDF
    Objectives. Short implants are increasing their popularity among clinicians who want to fulfill the constant demanding of fixed prosthetic solutions in edentulous jaws. The aim of this report was to propose a new possibility to project and realize an occlusal guided implant cross-arch prosthesis supported by ultra-short implants, describing it presented an edentulous mandible case report. Methods. A 61-year-old, Caucasian, female patient who attended the dental clinic of the University of L’Aquila presented with edentulous posterior inferior jaw and periodontitis and periimplantitis processes in the anterior mandible. The remaining tooth and the affected implant were removed. Six 4-mm-long implants were placed to support a cross-arch metal-resin prosthesis. Results. At 1-year follow-up clinical and radiological assessment showed a good osseointegration of the fixtures and the patient was satisfied with the prosthesis solution. Conclusion. The method, even if it requires further validation, seems to be a valid aid in solving lower edentulous clinical cases, and appears less complex and with more indications of other proposals presented in the current clinical literature. Our case report differs from the current technique All-on-Four, which uses four implants in the mandible to support overdenture prosthesis, assuring a very promising clinical resul

    Interactive design of dental implant placements through CAD-CAM technologies: from 3D imaging to additive manufacturing

    Get PDF
    In the field of oral rehabilitation, the combined use of 3D imaging technologies and computer-guided approaches allows the development of reliable tools to be used in preoperative assessment of implant placement. In particular, the accurate transfer of the virtual planning into the operative field through surgical guides represents the main challenge of modern dental implantology. Guided implant positioning allows surgical and prosthetic approaches with minimal trauma by reducing treatment time and decreasing patient’s discomfort. This paper aims at defining a CAD/CAM framework for the accurate planning of flapless dental implant surgery. The system embraces three major applications: (1) freeform modelling, including 3D tissue reconstruction and 2D/3D anatomy visualization, (2) computer-aided surgical planning and customised template modelling, (3) additive manufacturing of guided surgery template. The tissue modelling approach is based on the integration of two maxillofacial imaging techniques: tomographic scanning and surface optical scanning. A 3D virtual maxillofacial model is created by matching radiographic data, captured by a CBCT scanner, and surface anatomical data, acquired by a structured light scanner. The pre-surgical planning process is carried out and controlled within the CAD application by referring to the integrated anatomical model. A surgical guide is then created by solid modelling and manufactured by additive techniques. Two different clinical cases have been approached by inserting 11 different implants. CAD-based planned fixture placements have been transferred into the clinical field by customised surgical guides, made of a biocompatible resin and equipped with drilling sleeves

    DISTRIBUTIONS ISOTOPIQUES DES PRODUITS DE TRANSFERTS TRÈS INÉLASTIQUES ENTRE IONS LOURDS

    No full text
    On compare les distributions isotopiques expérimentales des produits de transfert trÚs inélastiques obtenus par les réactions 40Ca (284 MeV) + 40Ca et 40Ar (295 MeV) + 232Th

    Nuclear break-up of 11Be

    Full text link
    The break-up of 11Be was studied at 41AMeV using a secondary beam of 11Be from the GANIL facility on a 48Ti target by measuring correlations between the 10Be core, the emitted neutrons and gamma rays. The nuclear break-up leading to the emission of a neutron at large angle in the laboratory frame is identified with the towing mode through its characteristic n-fragment correlation. The experimental spectra are compared with a model where the time dependent Schrodinger equation (TDSE) is solved for the neutron initially in the 11 Be. A good agreement is found between experiment and theory for the shapes of neutron experimental energies and angular distributions. The spectroscopic factor of the 2s orbital is tentatively extracted to be 0.46+-0.15. The neutron emission from the 1p and 1d orbitals is also studied

    Microscopic description of Coulomb and nuclear excitation of multiphonon states in 40^{40}Ca + 40^{40}Ca collisions

    Get PDF
    We calculate the inelastic scattering cross sections to populate one- and two-phonon states in heavy ion collisions with both Coulomb and nuclear excitations. Starting from a microscopic approach based on RPA, we go beyond it in order to treat anharmonicities and non-linear terms in the exciting field. These anharmonicities and non-linearities are shown to have important effects on the cross sections both in the low energy part of the spectrum and in the energy region of the Double Giant Quadrupole Resonance. By properly introducing an optical potential the inelastic cross section is calculated semiclassically by integrating the excitation probability over all impact parameters. A satisfactory agreement with the experimental results is obtained.Comment: 20 pages, 2 figures, revtex, to be published in Phys. Rev.

    Realtime calibration of the A4 electromagnetic lead fluoride calorimeter

    Full text link
    Sufficient energy resolution is the key issue for the calorimetry in particle and nuclear physics. The calorimeter of the A4 parity violation experiment at MAMI is a segmented calorimeter where the energy of an event is determined by summing the signals of neighbouring channels. In this case the precise matching of the individual modules is crucial to obtain a good energy resolution. We have developped a calibration procedure for our total absorbing electromagnetic calorimeter which consists of 1022 lead fluoride (PbF_2) crystals. This procedure reconstructs the the single-module contributions to the events by solving a linear system of equations, involving the inversion of a 1022 x 1022-matrix. The system has shown its functionality at beam energies between 300 and 1500 MeV and represents a new and fast method to keep the calorimeter permanently in a well-calibrated state

    The importance of the nucleon-nucleon correlations for the eta alpha S-wave scattering length, and the pi-eta mixing angle in the low-energy eta alpha scattering length model

    Get PDF
    Using the new set of dd --> eta alpha near threshold experimental data, the estimate of the importance of the nucleon-nucleon correlations for the eta alpha S-wave scattering length in the multiple scattering theory is obtained using the low-energy scattering length model. The contribution turns out to be much bigger then previously believed. The pi-eta mixing angle is extracted using the experimental data on the dd --> eta alpha and dd --> pi alpha processes. The model is dominated by the subthreshold extrapolation recipe for the eta alpha scattering amplitudes. When the recipe is chosen the model is completely insensitive to the eta alpha parameters for the subthreshold value of the eta cm momentum of p_{eta}^2 = -(0.46)^2 fm^{-2}. Provided that the subthreshold extrapolation recipe is correct, a good estimate of the pi-eta mixing angle is obtained, if the experimental cross sections for the dd --> pi alpha reaction at the corresponding deuteron input energy are taken from the literature.Comment: 8 pages, 2 figure

    Probing pre-formed alpha particles in the ground state of nuclei

    Full text link
    In this Letter, we report on alpha particle emission through the nuclear break-up in the reaction 40Ca on a 40Ca target at 50A MeV. It is observed that, similarly to nucleons, alpha particles can be emitted to the continuum with very specific angular distribution during the reaction. The alpha particle properties can be understood as resulting from an alpha cluster in the daughter nucleus that is perturbed by the short range nuclear attraction of the collision partner and emitted. A time-dependent theory that describe the alpha particle wave-function evolution is able to reproduce qualitatively the observed angular distribution. This mechanism offers new possibilities to study alpha particle properties in the nuclear medium.Comment: 4 pages, 3 figure

    Evidence for Strange Quark Contributions to the Nucleon's Form Factors at Q2Q^2 = 0.108 (GeV/c)2^2

    Full text link
    We report on a measurement of the parity violating asymmetry in the elastic scattering of polarized electrons off unpolarized protons with the A4 apparatus at MAMI in Mainz at a four momentum transfer value of Q2Q^2 = \Qsquare (GeV/c)2^2 and at a forward electron scattering angle of 30∘<Ξe<40∘^\circ < \theta_e < 40^\circ. The measured asymmetry is ALR(e⃗p)A_{LR}(\vec{e}p) = (\Aphys ±\pm \Deltastatstat_{stat} ±\pm \Deltasystsyst_{syst}) ×\times 10−6^{-6}. The expectation from the Standard Model assuming no strangeness contribution to the vector current is A0_0 = (\Azero ±\pm \DeltaAzero) ×\times 10−6^{-6}. We have improved the statistical accuracy by a factor of 3 as compared to our previous measurements at a higher Q2Q^2. We have extracted the strangeness contribution to the electromagnetic form factors from our data to be GEsG_E^s + \FakGMs GMsG_M^s = \GEsGMs ±\pm \DeltaGEsGMs at Q2Q^2 = \Qsquare (GeV/c)2^2. As in our previous measurement at higher momentum transfer for GEsG_E^s + 0.230 GMsG_M^s, we again find the value for GEsG_E^s + \FakGMs GMsG_M^s to be positive, this time at an improved significance level of 2 σ\sigma.Comment: 4 pages, 3 figure

    Measurement of the Transverse Beam Spin Asymmetry in Elastic Electron Proton Scattering and the Inelastic Contribution to the Imaginary Part of the Two-Photon Exchange Amplitude

    Full text link
    We report on a measurement of the asymmetry in the scattering of transversely polarized electrons off unpolarized protons, A⊄_\perp, at two Q2^2 values of \qsquaredaveragedlow (GeV/c)2^2 and \qsquaredaveragedhighII (GeV/c)2^2 and a scattering angle of 30∘<Ξe<40∘30^\circ < \theta_e < 40^\circ. The measured transverse asymmetries are A⊄_{\perp}(Q2^2 = \qsquaredaveragedlow (GeV/c)2^2) = (\experimentalasymmetry alulowcorr ±\pm \statisticalerrorlowstat_{\rm stat} ±\pm \combinedsyspolerrorlowalucorsys_{\rm sys}) ×\times 10−6^{-6} and A⊄_{\perp}(Q2^2 = \qsquaredaveragedhighII (GeV/c)2^2) = (\experimentalasymme tryaluhighcorr ±\pm \statisticalerrorhighstat_{\rm stat} ±\pm \combinedsyspolerrorhighalucorsys_{\rm sys}) ×\times 10−6^{-6}. The first errors denotes the statistical error and the second the systematic uncertainties. A⊄_\perp arises from the imaginary part of the two-photon exchange amplitude and is zero in the one-photon exchange approximation. From comparison with theoretical estimates of A⊄_\perp we conclude that π\piN-intermediate states give a substantial contribution to the imaginary part of the two-photon amplitude. The contribution from the ground state proton to the imaginary part of the two-photon exchange can be neglected. There is no obvious reason why this should be different for the real part of the two-photon amplitude, which enters into the radiative corrections for the Rosenbluth separation measurements of the electric form factor of the proton.Comment: 4 figures, submitted to PRL on Oct.
    • 

    corecore